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Abstract

This paper considers the reflection and transmission of a flexural-gravity wave within ice sheets floating on water as it

propagates through a series of abrupt changes in ice sheet characteristics. The canonical problem involves one such

junction at which two semi-infinite ice sheets of different properties are either frozen together or separated by a crack.

Unlike most mathematical approaches to problems involving ice sheets, we allow the ice sheets to adopt a variable

submergence according to their thickness. The problem is solved using integral equations formulated through the

matching of eigenfunction expansions.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last decade, a considerable number of papers have been written which aim to determine the scattering

properties of a variety of inhomogeneities in ice sheets floating on water. These include features such as leads (open

stretches of sea water between two ice sheets) and cracks which form when ice sheets fracture as well as pressure ridges

(often forming both ‘keels’ below and ‘sails’ above the otherwise constant lower and upper levels of the ice sheets) which

form when two ice sheets are compressed by currents and/or wind stress [e.g. Wadhams (1988), who also provides some

statistical distributions for such features].

Thus the large polar ice sheets that form across the Arctic and Antarctic seas are embedded with a variety of different

structures all of which have an effect on the propagation of hydroelastic waves whose energy originates from the

transmission of ocean surface waves into flexural waves at the boundary of the marginal ice zone.

There are good reasons to be interested in the wave propagation across the ice sheets. First, wave action is one of the

factors assisting the breakup of ice (in turn accelerating the melting of sea ice) and thus it is useful to be able to

approximate how far waves can propagate through an ice field. Secondly, it may be possible to use inverse scattering

ideas along with a statistical knowledge of the distribution of inhomogeneities to determine the thickness of the ice.

Remote sensing of the wave propagation across ice sheets can be done efficiently and continuously using satellite
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interrogated wave buoys and thus an inverse scattering approach for determinating ice thickness is an extremely

attractive prospect. In contrast, current methods which rely on taking manual measurements of ice thickness are slow

and costly. The determination of ice thickness is an area of key importance given the current concern of the retreat of

summer sea ice in the Arctic seas.

This second reason was the main motivation for undertaking the present paper. Our results are currently being used

in collaborative work between the first author and V.A. Squire (University of Otago), in the calculation of the scattering

by ice fields containing a large number of leads. In trials to date, the scattering thus obtained was fitted with a simpler

curve based on average scattering and a thickness estimate produced. The results of doing this seem promising.

The importance of accurately and efficiently determining the reflection and transmission properties from each feature

is therefore of some importance. These fundamental problems, as described at the beginning of the introduction must

come under scrutiny. In these linear hydroelastic problems, it is has been common practice for researchers to assume

that the ice sheet ‘floats’ on top of the water so that the underside of the ice sheet occupies the same horizontal plane as

the mean open water level, irrespective of changes in ice thickness. For two identical ice sheets separated by a narrow

crack (Squire and Dixon, 2000; Evans and Porter, 2003) this is not an issue. But when considering scattering by changes

in ice thickness (for example, through a pressure ridge) it is not physically realistic to ignore the submergence of the ice

sheet and assume the extra mass of ice simply sits above the waterline. Largely because of the mathematical difficulties

of incorporating changes of submergence of the ice sheet, but also because of the seemingly small drafts of irregularities

in comparison to the wavelengths of ice-coupled waves (which for 1-m-thick ice are commonly between 50 and 600m)

many researchers have continued to calculate scattering without including submergence [e.g. Williams and Squire (2004,

2007) and Kohout et al. (2007)]. This is also routinely done when modelling ice floes in open water [e.g. Meylan and

Squire (1994) and Wang et al. (2007)]. Indeed, Williams and Squire (2008a) show that when considering an iceberg

embedded into an ice sheet or an ice floe in open water, results for an individual feature obtained from neglecting

submergence are qualitatively very similar to those obtained when the correct draft is included. However, small

differences can add up, especially when large numbers of irregularities are considered, and so it is valuable to have an

accurate and efficient method of dealing with submergence [also considered in the work of Wu et al. (1995), Porter and

Porter (2004) and Bennetts et al. (2007)].

In the current paper, we approach the problem of the transmission of oblique waves through a junction between two

semi-infinite ice sheets of (generally) different but uniform thickness (see Fig. 1). Each sheet individually obeys

Archimedes’ law; consequently there exists a step in the lower profile of the ice sheet along the line of the junction. This

is a problem which is not amenable to the mild-slope method of Porter and Porter (2004); it could also be treated by

adapting the methods of Wu et al. (1995) and Bennetts et al. (2007), although our method has the advantage that it

takes into account the singularity in the velocity potential at the lower corner of the step which produces extremely good

convergence. This single step problem is the canonical problem to consider when the horizontal distance over which the

thickness changes is much less than the shortest wavelength in the spectrum (typically about 50m), as in the two edges

of a lead.

In the problem under consideration here, we allow the junction between the two ice sheets of different thickness to be

either frozen or to contain a narrow crack. The method of solution involves expanding either side of the junction, under

each semi-infinite ice sheet, in a set of non-orthogonal eigenfunctions. We use a matching procedure at the junction

which takes into account continuity of fluid velocity and pressure, and applies no normal flow on the vertical face of the

thicker ice sheet in addition to the application of free bending and shearing conditions on the edge of each ice sheet. The

problem is formulated as an integral equation for an unknown horizontal fluid velocity, uðzÞ, in the vertical matching

interval below the ice sheets in a manner similar to that used by Porter (1995) for surface wave scattering by vertical

steps in the sea bed. It is shown that the key quantities are readily determined as inner products of uðzÞ with the forcing

functions in the integral equation, which is itself solved by using a Galerkin scheme which takes into account corner

singularities in the velocity potential. This Galerkin-based formulation has not been used previously in the area of ice

sheets. However, it is a completely general method that has seen widespread use in other linear field theories such as

water waves, acoustics and electromagnetics [see, for example, Porter (1995) and Linton and McIver (2001)], and it is

characterised by efficient and accurate numerical solutions.

In Section 2, the governing equations are stated and the integral equation is formulated by application of various

conditions. The Galerkin approximation is implemented in Section 3, giving rise to the systems of equations that are

solved numerically. In Section 4 we show how reflection and transmission coefficients can be obtained when there are

multiple junctions by applying the wide-spacing approximation. In the short Section 5, we briefly discuss the system

that arises and the equations that need to be solved when considering the possibility of edge waves travelling either side

of a crack. For ice sheets of the same thickness either side of the crack, Evans and Porter (2003) showed that edge waves

existed very close to the cut-off frequency. These edge waves are exponentially decaying in the direction perpendicular

to the crack, but travel along the crack with a wavenumber close to the wavenumber for propagation in the absence of
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Fig. 1. Geometry of the problem being considered. The coordinate system used is chosen so that z ¼ 0 corresponds to the position of

the free air–water surface if the ice were to melt, and so that H would be the depth if this happened. The figure shows the thicknesses

and submergences of the two ice sheets—respectively, these are hj and sj (for j ¼ 0; 1, where j ¼ 0 corresponds to the left hand side, and

j ¼ 1 to the right hand side). The water depths on each side of the interface between the two ice sheets (which is located at x ¼ 0;

x increases to the right) are H0 and H1. In the current paper we study the scattering of plane waves which may be obliquely incident

from either region. The angle that the waves make to the x axis is yj (j ¼ 0; 1)—this depends on the region they originate from as the

waves will be diffracted as they pass from one to the other.
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the crack. In Evans and Porter (2003), the edge wave was shown to be symmetric about the crack. Because of the

difference in ice sheet thickness, the symmetry is destroyed. It is shown that edge waves exist only for very small

perturbations from equal thickness. The results are described in Section 6 and finally the paper is summarised in

Section 7.
2. Governing equations and formulation of integral equations

The geometry of the problem being considered is shown in Fig. 1. Cartesian coordinates (x; y; z) are chosen with

z pointing vertically upwards and the z ¼ 0 aligned with the position of the undisturbed free surface of a fluid in the

absence of ice. The fluid is assumed to be of constant density r, and to have a flat bottom located at z ¼ �H. Two

different ice sheets each of uniform density and thickness now cover the fluid, and meet one another along the plane

x ¼ 0. In xo0, the ice sheet is of density r0, flexural rigidity D0 and is of thickness h0. In x40, the corresponding

parameters are r1, D1 and h1. The flexural rigidity is defined in terms of a Young’s modulus Ej , Poisson ratio nj , as

Dj ¼
1
12

Ejh
3
j =ð1� n2j Þ, j ¼ 0; 1. Archimedes’ Law implies that the submergence either side of x ¼ 0 is related to the

thickness via sj ¼ hjðrj=rÞ, making the water depth Hj ¼ H � sj . At the interface between the two ice sheets, the edges

may be either frozen together or free. The physical and mathematical conditions that arise from either case are

discussed later.

Time harmonic motion of angular frequency o is assumed. We choose h14h0, so that the thicker ice sheet occupies

the region x40, but in order to retain generality we will allow waves to be obliquely incident from both negative and

positive infinity. Because of the uniformity in the y-direction (in the direction of the crack), we may take out a constant

phase factor, ay, which will eventually be related to the wavenumber and angle of propagating waves in xo0 and x40.

Before continuing, it makes sense to nondimensionalise variables in the problem. We begin by defining a

characteristic lengthscale L ¼ ðD1=ðro2ÞÞ
1=5, and some non-dimensional variables and parameters ðx̄; ȳ; z̄Þ ¼ ðx; y; zÞ=L,

t̄ ¼ ot, H ¼ H=L, s̄j ¼ ðrjhjÞ=ðrLÞ, Hj ¼ Hj=L, Dj ¼ Dj=D1 (j ¼ 0; 1), ay ¼ ayL, and k ¼ o2L=g. Here, k, the non-

dimensional infinite depth open water wavenumber, is the main spectral parameter.

Dropping the overbars now for clarity, we define a velocity potential in terms of the non-dimensional variables and

wavenumbers

Fðx; y; z; tÞ ¼ Re½fðx; zÞ eiðayy�tÞ�, (1)

whose gradient determines the velocity of a fluid particle at a given point. The function f satisfies the following

equations:

ðr2 � a2yÞfðx; zÞ ¼ 0 in the fluid domain, (2a)
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ðLjð@xÞ@z � 1Þfðx;�sjÞ ¼ 0 for x 2 ð�1Þjð�1; 0Þ and ðj ¼ 0; 1Þ, (2b)

@xfð0�; zÞ ¼ 0 for z 2 ð�s1;�s0Þ, (2c)

@zfðx;�HÞ ¼ 0, (2d)

in addition to edge conditions which we will introduce later. In (2) we have defined the operator

Ljð@xÞ ¼ Djð@
2
x � a2yÞ

2
þ k�1 � sj .

The motion of the ice sheet is governed by a Kirchhoff model (also known as an Euler–Bernoulli thin elastic plate

model) and linearised dynamic and kinematic boundary conditions on the underside of the ice sheets are combined to

give (2b). For further details on the derivation of Eqs. (2), see the appendix in Williams and Squire (2004).

Now, let f be divided into two parts, one on either side of the place x ¼ 0, by writing

fðx; zÞ ¼
fð0Þðx; zÞ for ðx; zÞ 2 ð�1; 0Þ � ð�H;�s0Þ;

fð1Þð�x; zÞ for ðx; zÞ 2 ð0;1Þ � ð�H ;�s1Þ:

(
(3)

Consideration of separation solutions in each semi-infinite domain, under the conditions (2a), (2b) and (2d) allows us to

write

fðjÞðx; zÞ ¼ Aj e
iajxjðjÞðz; ajÞ þ

X
a2Sj

RjðaÞ e�iaxjðjÞðz; aÞ, (4)

where

jðjÞðz; aÞ ¼
cosh gðaÞðzþHÞ

cosh gðaÞHj

(5)

are vertical eigenfunctions. The dispersion relations for each side of the domain is defined as f jðaÞ ¼
LjðgÞg tanhðgHjÞ � 1 ¼ 0, where gðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ a2y

q
and LjðgÞ �LjðiaÞ ¼ Djg4 þ k�1 � sj . We also define the sets of

roots to the dispersion relations as Sj ¼ fa 2 C j f jðaÞ ¼ 0 j 0pArg½a�opg. Each Sj has a single root aj such that

gj ¼ gðajÞ is positive real.

Note that in (4), we have allowed waves to be incident from both minus and plus infinity with amplitudes A0 and A1,

respectively. The amplitude of waves propagating to minus and plus infinity are R0ða0Þ and R1ða1Þ. The wavenumber of

propagating waves in xo0 and x40 is gða0Þ and gða1Þ and the waves propagate at an angle yj ¼ tan�1ðay=ajÞ with

respect to the plane y ¼ 0.

The jðjÞ satisfy the following integral rules for j ¼ 0; 1:

I ðjÞða; bÞ ¼ � 2aB
ð2Þ
j ðaÞ

Z �sj

�H

jðjÞðz; aÞjðjÞðz; bÞ dz

¼ da;b þ 2aB
ð2Þ
j ðaÞDjða2 þ b2 þ 2a2yÞ@zjðjÞð�sj ; aÞ@zjðjÞð�sj ; bÞ

� da;b þ 2aB
ð1Þ
j ðaÞDjðf

�
ðaÞ þ f �ðbÞÞ@zjðjÞð�sj ; bÞ, (6)

where da;b ¼ 1 if a ¼ b and zero otherwise, whilst

f �ðaÞ ¼ g2ðaÞ � ð1� nÞa2y (7)

and

B
ð0Þ
j ðaÞ ¼

�g2=a
HjðL2

j ðgÞg2 � 1Þ þ 5Djg4 þ k�1 � sj

, (8)

B
ðrÞ
j ðaÞ ¼ Lr

j ðgÞB
ð0Þ
j ðaÞ ¼ B

ð2Þ
j ðaÞð@zjðjÞð�sj ; aÞÞ

ð2�rÞ for r ¼ 1; 2, (9)

the latter relation having been used with r ¼ 1 in deriving (6).

Continuity of fluid pressure and velocity implies the matching conditions

fð0Þð0; zÞ ¼ fð1Þð0; zÞ

uðzÞ � @xf
ð0Þ
ð0; zÞ ¼ �@xf

ð1Þ
ð0; zÞ

)
for z 2 ð�H ;�s1Þ (10)

(the minus sign against the second derivative is inherited from the definition in (3) and assists in subsequent algebraic

manipulations).
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Hence

ajAjjðjÞðz; ajÞ �
X
a2Sj

aRjðaÞjðjÞðz; aÞ ¼
0 for z 2 ð�s1;�sjÞ;

�iuðzÞ for z 2 ð�H ;�s1Þ:

(
(11)

For each j (j ¼ 0; 1) we multiply (11) by �2ð�1ÞjB
ð2Þ
j ðbÞj

ðjÞðz; bÞ (b 2 Sj) and integrate with respect to z over ð�H ;�sjÞ.

Using (6), this gives

2ð�1ÞjB
ð2Þ
j ðbÞiðFjuÞðbÞ

¼ Ajdb;aj
� RjðbÞ þ 2ajA1DjB

ð1Þ
j ðbÞðf

�
ðbÞ þ f þðajÞÞ@zjðjÞð�sj ; ajÞ

� 2DjB
ð1Þ
j ðbÞ

X
a2Sj

aRjðaÞðf
�
ðbÞ þ f þðaÞÞ@zjðjÞð�sj ; aÞ (12)

for all b 2 Sj , j ¼ 0; 1 where

ðFjuÞðaÞ �
Z �s1
�H

uðzÞjðjÞðz; aÞ dz. (13)

Some careful algebra shows that (12) can be written

RjðbÞ ¼ Ajdb;aj
� 2ið�1ÞjðB

ð2Þ
j ðbÞðFjuÞðbÞ � B

ð1Þ
j ðbÞe

T
j ðbÞQjÞ, (14)

for all b 2 Sj , j ¼ 0; 1 where

ejðaÞ ¼
1

�Djf
�
ðaÞ

 !
; Qj �

SðjÞ

QðjÞ

 !
¼

DjL
þð@xÞ

1

 !
@x@zfðjÞð0;�sjÞ, (15)

and where we have defined L�ð@xÞ ¼ ð@
2
x � a2yÞ � ð1� nÞa2y. In (15), SðjÞ and QðjÞ represent the unknown shear force and

the gradient of elevation (respectively) at the edges of the two ice sheets.

We now apply the first condition in (10) to give

A0jð0Þðz; a0Þ þ
X
a2S0

R0ðaÞjð0Þðz; aÞ ¼ A1jð1Þðz; a1Þ þ
X
a2S1

R1ðaÞjð1Þðz; aÞ. (16)

Substituting in from Eq. (14) (with a replacing b) for the RjðaÞ into the above gives the integral equation

ðKuÞðzÞ ¼ f ðzÞ for z 2 ð�H;�s1Þ, (17)

where

ðKuÞðzÞ ¼ i
X1
j¼0

X
a2Sj

B
ð2Þ
j ðaÞðFjuÞðaÞ � jðjÞðz; aÞ

¼
X1
j¼0

Z �s1
�H

GðjÞð0; z; z0Þuðz0Þ dz0, (18a)

f ðzÞ ¼
X1
j¼0

ð�1ÞjAjjðjÞðz; ajÞ þ i
X
a2Sj

B
ð1Þ
j ðaÞe

T
j ðaÞQjj

ðjÞðz; aÞ

0
@

1
A, (18b)

and

GðjÞðx� x0; z; z0Þ ¼ i
X
a2Sj

B
ð2Þ
j ðaÞ e

iajx�x0jjðjÞðz; aÞjðjÞðz0; aÞ (19)

are, as one might expect, Green’s functions for the two regions xo0 (j ¼ 0) and x40 (j ¼ 1), which are well known to

have logarithmic singularities as ðx; zÞ ! ðx0; z0Þ.

2.1. Edge conditions

If h040, the forcing function, f ðzÞ, in (17) contains four unknown constants—SðjÞ and the QðjÞ, j ¼ 0; 1 in the two Qj

vectors—and we will have four edge conditions to apply.
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f also contains the two incident waves; so, if we write

f ðzÞ ¼ fTðzÞQ̂; Q̂
T
¼ ðA0;A1;Q0;Q1Þ,

and solve

ðKuÞðzÞ ¼ fðzÞ,

the linearity of K implies that u ¼ uTQ̂ solves (17).

If we now substitute this into (14), we can write

RjðaÞ ¼ rTj ðaÞQ̂, (20a)

rT0 ðaÞ ¼ ðda;a0 ; 0; 2iB
ð1Þ
0 ðaÞe

T
0 ðaÞ; 0; 0Þ � 2iB

ð2Þ
0 ðaÞðF0u

TÞðaÞ, (20b)

rT1 ðaÞ ¼ ð0; da;a1 ; 0; 0;�2iB
ð1Þ
1 ðaÞe

T
1 ðaÞÞ þ 2iB

ð2Þ
1 ðaÞðF1u

TÞðaÞ. (20c)

Now, applying the edge conditions will always involve two manipulations involving the two Qj vectors; in addition,

we will have to calculate

Pj ¼
PðjÞ

M ðjÞ

 !
¼

1

DjL
�ð@xÞ

 !
@zf
ðjÞ
ð0;�sjÞ

¼
X
a2Sj

ðAjda;aj
þ RjðaÞÞejðaÞ@zjðjÞð�sj ; aÞ. (21)

PðjÞ and M ðjÞ represent the displacement and bending moment at the edge of the jth sheet.

By (20a), these quantities will depend on Q̂, and by manipulating these as well we eventually obtain four equations in

the four unknowns, which we will then solve in terms of the amplitudes of the given incident wave forcings A0 and A1.

Potentially then, we need to solve a 4� 4 system, but for the edge conditions that we use this always reduces down to a

2� 2 one, which we write

MedgeQ ¼ B
A0

A1

 !
, (22)

where Q is an unknown 2-vector.

When h0 ¼ 0, this system actually becomes two scalar equations (see Section 2.1.2 below). There are two main sets of

edge conditions that we use, the frozen edge and free edge conditions, which we now introduce.

2.1.1. Frozen edge conditions

If the two sheets of ice are frozen together we require that the displacement, the slope of the displacement, the

bending moment and the transverse edge force are continuous across the edge. This can be represented by the following

equations:

Q0 ¼ Q1; P0 ¼ P1. (23a,b)

Two unknowns (either Q0 or Q1) may be eliminated immediately by applying (23a), and the other two may be found by

applying (23b). This is done by substituting u, the solution to (17) which will depend on the two unknowns, into (14),

calculating PðjÞ and M ðjÞ and using (23b) to create a 2� 2 system of linear equations.

2.1.2. Free edge conditions

If the two sheets of ice are free to move independently we require that the bending moments and transverse edge

forces must vanish from both sides of the crack.

This can be represented by the following equations:

SðjÞ ¼ 0; M ðjÞ ¼ 0, (24a,b)

for j ¼ 0; 1. Again we may eliminate two unknowns from the Qj vectors using (24a), and we find the remaining two by

applying (24b). As with the free edge case, this will usually result in a 2� 2 system of linear equations.

The exception is that if h0 ¼ 0 (i.e. if the left hand region is open water without an ice cover) then the forcing term

corresponding to that side,

i
X
a2S0

B
ð1Þ
0 ðaÞe

T
0 ðaÞQ0j

ð0Þðz; aÞ,
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will vanish as

eT0 ðaÞQ0 ¼ ð1 0Þ
0

Qð0Þ

 !
¼ 0

for all a 2 S0. The bending moment Mð0Þ will be zero automatically also, so to find the remaining unknown Qð1Þ the only

condition that we need to apply is M ð1Þ ¼ 0.
3. Numerical procedure

The solution of the integral equation (17) is approximated using a Galerkin scheme in which, first, the unknown

function representing the horizontal component of fluid velocity along x ¼ 0 below the corner of the step in a series of

even Gegenbauer polynomials. Thus we write

uðzÞ ¼
2

H1

X1
n¼0

unC2n
zþH

H1

� �
, (25)

where

CnðtÞ ¼
n!ðnþ bÞG2ðbÞ

p21�2bGðnþ 2bÞ
ð1� t2Þb�1=2CðbÞm ðtÞ, (26)

and CðbÞm ðtÞ is a Gegenbauer polynomial. The weighting in the definition above is chosen so that the orthogonality

relation

2

Z 1

0

C2mðtÞC
ðbÞ
2n ðtÞ dt ¼ dmn (27)

is satisfied.

The constant b which appears in uðzÞ allows us to incorporate the required singularity into the fluid velocity at the

corner of the ice sheet. In general, at a corner where a fluid region is (locally) contained in wedge of angle y, the fluid

velocity is of the order rp=y�1, where r is the distance to the corner. Specifically, if H1aH2 then at the bottom left hand

corner of the thicker ice sheet y ¼ 3p=2, so b ¼ �1
3
þ 1

2
¼ 1

6
captures the order of the singularity. On the other hand if

H1 ¼ H2 then y ¼ p and b ¼ 0þ 1
2 ¼

1
2 is chosen—in this case there is no singularity and we use the Legendre

polynomials PnðtÞ ¼ C1=2
n ðtÞ. Also note that there is never a singularity at the bottom right corner of the thinner ice sheet

where the angle is y ¼ p=2 (b ¼ 1).

The Galerkin scheme involves inserting the series representation (25) into the integral equation (17), multiplying the

resulting equation by C2mððzþHÞ=H1Þ and integrating over �Hozos1. This procedure results in the infinite linear

system of algebraic equations

X1
j¼0

X1
n¼0

GðjÞmnun ¼ f m; m ¼ 0; 1; . . . , (28)

for the coefficients un. In (28),

f m ¼ 2

Z 1

0

C2mðtÞf ðH1t�HÞ dt

¼
X1
j¼0

ð�1ÞjAjF
ðjÞ
m ðajÞ þ i

X
a2Sj

B
ð1Þ
j ðaÞe

T
j ðaÞQjF

ðjÞ
m ðaÞ

0
@

1
A (29)

and

GðjÞmn ¼ 4

Z 1

0

Z 1

0

C2mðtÞG
ðjÞð0;H1t�H;H1t0 �HÞC2nðt0Þ dt0 dt

¼ i
X
a2Sj

B
ð2Þ
j ðaÞF

ðjÞ
m ðaÞF

ðjÞ
n ðaÞ. (30)
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In (29) and (30) we have defined

F ðjÞn ðaÞ ¼
2

H1

Z �s1
�H

jðjÞðz; aÞC2n
zþH

H1

� �
dz

¼ 2 sechðgHjÞ

Z 1

0

cosðstÞC2nðtÞ dt

¼
ð�1ÞnGðbÞ
coshðgHjÞ

s
2

� ��b
ð2nþ bÞJ2nþbðsÞ, (31)

where the abbreviation s ¼ �igH1 has been used. These functions are defined so that

ðFjuÞðaÞ ¼
X1
n¼0

unF ðjÞn ðaÞ,

and their final expressions come from the result

cosðstÞ ¼ GðbÞ
s
2

� ��bX1
n¼0

ð2nþ bÞð�1ÞnJ2nþbðsÞC
ðbÞ
2n ðtÞ, (32)

for �1ptp1 (Abramowitz and Stegun, 1965, equation 9.1.81).

For the purposes of computation, the infinite system of equations in (28) above is truncated typically to a modest size

of order 10.
4. The extension to multiple edges

Thus far we have considered the scattering of waves by a single junction in the ice sheet, between two ice sheets of

generally different thicknesses and submergence with either frozen or free edges. We wish to consider the interaction of

waves with more than one such junction. This is often achieved using a so-called wide spacing approximation (Evans,

1990; Martin, 2006) in which only propagating wave effects are considered in the interaction between two junctions.

Here we have chosen to consider the full unapproximated interaction between junctions within a framework under

which the classic wide-spacing results may eventually be recovered as an approximation. Other authors who have used

similar ideas are Guazelli et al. (1992) and Porter and Porter (2003).

This involves formulating the interaction at each junction in terms of reflection and transmission matrices (rather

than coefficients) which identify the outgoing wave amplitudes in mode a towards x ¼ �1 (i.e. j ¼ 0; 1) due to an

incident wave of mode b from either �1.

Thus we replace (4) by

fðjÞðx; zÞ ¼
X
a2Sj

ðAjðaÞ eiax þ RjðaÞ e�iaxÞjðjÞðz; aÞ, (33)

the key difference here being the sum over the whole set Sj in the incident wave amplitudes AjðaÞ (j ¼ 0; 1). Then it is not

difficult to show that

R0ðaÞ ¼
X
b2S0

Rþða; bÞA0ðbÞ þ
X
b2S1

T�ða;bÞA1ðbÞ, (34a)

R1ðaÞ ¼
X
b2S1

R�ða; bÞA1ðbÞ þ
X
b2S0

Tþða;bÞA0ðbÞ, (34b)

gives the outgoing wave amplitudes towards x ¼ �1. Thus Rþða; bÞ represents the waves reflected back from the

junction at x ¼ 0 in mode a from a wave incident from �1 in mode b. The matrix element Tþða; bÞ gives the

corresponding wave amplitude transmitted to x ¼ þ1.

It is not difficult to adapt the theory presented in Section 2 to calculate these matrix elements.

In matrix/vector form, (34) can be written, where each element corresponds to the discrete values of a and b,

R0 ¼ RþA0 þ T�A1; R1 ¼ R�A1 þ TþA0. (35a,b)

Now suppose we have two junctions in the ice sheet, the first located at x ¼ 0 and a second at x ¼ l. There are now

three generally different regions xo0, 0oxol and x4l corresponding to j ¼ 0; 1; 2 each having their own separation
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solutions. Thus we write the potential as

fðx; zÞ ¼

P
a2S0

ðA0ðaÞ eiax þ R0ðaÞ e�iaxÞjð0Þðz; aÞ for x 2 ð�1; 0Þ;

P
a2S1

ðB0ðaÞ eiax þ B1ðaÞ eiaðl�xÞÞjð1Þðz; aÞ for x 2 ð0; lÞ;

P
a2S2

ðA1ðaÞ eiaðl�xÞ þ R1ðaÞ eiaðx�lÞÞjð2Þðz; aÞ for x 2 ðl;1Þ:

8>>>>>><
>>>>>>:

(36)

Each junction will then have an associated set of scattering matrices R�j ða; bÞ and T�j ða; bÞ, j ¼ 0 corresponding to

x ¼ 0, the interface between regions 0 and 1 and j ¼ 1 corresponding to the interface at x ¼ l between regions 1 and 2.

It follows from (35) then that

R0 ¼ Rþ0 A0 þ T�0 DB1; B0 ¼ Tþ0 A0 þ R�0 DB1, (37,38)

B1 ¼ T�0 A1 þ Rþ1 DB0; R1 ¼ R�1 A1 þ Tþ1 DB0, (39,40)

where

D ¼ diagfeialgja2S1

contains either a phase shift or exponential decay as the generated waves travel from one edge to the other. Hence

B0 ¼ ðI� R�0 DRþ1 DÞ
�1
ðTþ0 A0 þ R�0 DT�0 A1Þ �M0A0 þM1A1, (41)

and so (35) holds in this case also, where the scattering matrices for the combined system of two junctions are now given

in terms of the individual scattering matrices as

Rþ ¼ Rþ0 þ T�0 DRþ0 M0; R� ¼ R�1 þ Tþ1 DM1, (42a,b)

Tþ ¼ Tþ1 DM0; T� ¼ T�0 DðT
�
0 þ Rþ0 DM1Þ. (42c,d)

The process described above can then be used iteratively for more than two junctions. Note that computationally, only

a small number of evanescent waves are included in the interactions and so each scattering matrix is small. If evanescent

effects are completely ignored, the scattering matrices are 2� 2 and we return to the familiar case of wide-spacing.
5. Edge waves

Evans and Porter (2003) showed that for two identical ice sheets separated by a crack (where h0 ¼ h1 and the free

edge conditions are applied at the junction between the two sheets) there are certain wavenumbers by, slightly above the

wavenumber g0, at which edge waves may exist and travel along a crack, even in the absence of an incident wave. (They

decay exponentially in the direction perpendicular to the crack.) Mathematically, this is equivalent to setting

A0 ¼ A1 ¼ 0, which would then imply that (22) becomes

MedgeQ ¼ 0. (43)

We then allow ay to be greater than g04g1 and by varying it look for non-trivial solutions to (43)—i.e., we find a value

of ay (by) such that the determinant of Medge vanishes. The null space of Medge then determines the shape of the edge

wave (i.e. the value of Q).

By following the same procedure we will investigate whether or not these edge waves may also exist when h0ah1.
6. Results

We begin this section by presenting some initial results which illustrate the range of geometries and combinations of

edge conditions that can be treated with this method. These results are verified using independent methods wherever

possible.

Particular attention is paid to the problem of scattering by leads, and to the convergence of the wide-spacing

approximation (WSA) for leads. (A lead is a region of open water or thin ice enclosed between two different ice sheets,

and we deal with it by the multiple-scattering method of Section 4.) We concentrate on leads so much primarily because
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Williams and Squire (2008b) showed that the scattering of large ice fields is dominated by the scattering of the leads

contained in them (in comparison to other irregularities such as pressure ridges).

We finish the section by extending the investigation of Evans and Porter (2003) into the existence of edge waves along

a crack between two ice sheets. They observed them numerically when the ice sheets on either side of the crack had

identical thicknesses, and we investigate how long they persist when one or other of the thickness is changed. It is found

that only a tiny change is needed to completely obliterate them.
6.1. Sample results and verification

Let us define a reflection coefficient R ¼ Rþða0; a0Þ. The quantity that we are most interested in is its magnitude,

jRj ¼ jRþða0; a0Þj ¼ jR�ða1; a1Þj, which is the amplitude of the reflected wave if a unit amplitude wave propagating

wave arrives at the feature in question either from the left or from the right. Our first check is that it and the

transmission coefficient T ¼ Tþða1; a0Þ satisfy the energy conservation relationship jRj2 þ sjTj2 ¼ 1, where s ¼

B
ð2Þ
0 ða0Þ=B

ð2Þ
1 ða1Þ is called the intrinsic admittance. This relationship is satisfied to machine precision, as is typical for

variational methods such as the Galerkin method Porter (1995).

Now, there are many different ways of calculating the scattering by edges between ice sheets when the effects of

submergence are neglected, and so we continue our verification by testing that our method works in that case. Recall

that this is simply a matter of using the Cð1=2Þn polynomials (also known as the Legendre polynomials) instead of the

Cð1=6Þn polynomials. Fig. 2(a) shows the amount of reflection by a single edge when h1 ¼ 1m, H1 ¼ 20m and h0 ¼ 0

(solid line), 0.5m with free edge conditions (dashed line) and 0:5m with frozen edge conditions (dotted line). The dots
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Fig. 2. Sample results when the effect of submergence is neglected. (a) The solid line shows the scattering by a single edge when h0 ¼ 0,

while the dashed and dotted lines show the scattering when h0 ¼ 0:5m and when either the free edge or frozen edge conditions are

applied (respectively). For all cases h1 ¼ 1 and H1 ¼ 20m. (b) The solid line shows the scattering by a pair of edges when h0 ¼ h2 ¼ 0,

while the dashed and dotted lines show the scattering when h0 ¼ h2 ¼ 0:5m and when either the free edge or frozen edge conditions are

applied (respectively, and at both edges). For all cases the waves are normally incident, h1 ¼ 1, H1 ¼ 20 and l ¼ 15m (only applicable

in (b) and (c)). (c) The solid line shows the scattering when h0 ¼ h2 ¼ 1, H0 ¼ 20m, h1 ¼ 0, while the dashed line shows the scattering

when h1 ¼ 0:5m and the free edge conditions are applied (at both edges). The dotted line shows the scattering when h0 ¼ 0, h1 ¼ 1,

h2 ¼ 0:5 and H1 ¼ 20m. The frozen edge conditions are applied at the joint between the two ice sheets, and l ¼ 15m. Checks: The dots

in (a) compare our results with those from a different eigenfunction matching method (Evans and Porter, 2003), while the dots in

(b) and (c) compare our results with those from that same eigenfunction matching method when they are extended using (42).
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Fig. 3. Sample results when the effect of submergence is included. The curves shown in all the figures correspond to the same

geometries used in Fig. 2. Checks: The dots plotted in (b) compare the results using the method of Williams and Squire (2008a), who

used Green’s theorem.
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that fall on each line are the result of doing the same calculations but with the eigenfunction matching method (EMM)

as it is usually used (Sahoo et al., 2001; Evans and Porter, 2003) instead of coupling it to a Galerkin scheme as we do—

as can be seen the two different methods give very good agreement. The curves are all plotted against k ¼ ðLo2Þ=g, the

non-dimensional open water, infinite depth wavenumber.

In Fig. 2(b), we add the mirror image of the edge in Fig. 2(a), 15m to the right of that edge, so that the solid line

represents a 15-m-wide, 1-m-thick floe in open water, and the other lines represent the same floe embedded in a 0.5-m-

thick ice sheet, with the free (dashed) and frozen (dotted) edge conditions applied at both edges.

Fig. 2(c) is similar to Fig. 2(b): the solid and dashed lines represent 15-m-wide leads in a 1-m-thick ice sheet, the

former showing the reflection when the lead just contains open water while the latter contains 0.5-m-thick ice with free

edges. For a little variation, however, the dotted line shows the scattering by a 15-m-wide, 1-m-thick floe with open

water on the left and 0.5-m-thick ice on the right. Frozen edge conditions are applied at the edge between the floe and

the ice sheet.

In both Figs. 2(b) and (c), the dots plotted are calculated with the usual EMM combined with our the multiple edge

result (42) and show excellent agreement with our results.

Fig. 3 shows reflection results for the same geometries as in Fig. 2, but when the effects of submergence are included.

The results in (b) were checked using the method of Williams and Squire (2008a) who used Green’s theorem and good

agreement was obtained, as can be seen by the dots plotted. Unfortunately, no independent methods were available to

us for checking the results of either (a) or (c) as Green’s theorem method does not work for semi-infinite regions, for

when the two outer thicknesses are different, or when the middle thickness is smaller than the outer ones. However, as

the results of (a) are needed to obtain those in (b), we are fairly confident in those ones also. In support of those in (c),

they are calculated in exactly the same way as those in (b) so we are quite confident of them also. Moreover, all the no-

submergence results were confirmed with the EMM method, and as mentioned above ‘‘switching’’ the effects of

submergence ‘‘on’’ or ‘‘off’’ only involves the fairly minor change of swapping one set of Gegenbauer polynomials for

another.

In terms of the actual scattering patterns shown in Figs. 2(a) and 3(a), including the effects of submergence when both

sides of the transition are covered with ice makes little difference. In both figures the reflection curves initially climb

steeply as k increases from zero, before leveling off in the short wave limit to about 0.94 and 0.20 when the free and
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frozen edge conditions are applied, respectively. In contrast, including submergence when h0 ¼ 0 produces quite

marked changes in the reflection predicted—particularly for short waves when jRj � 0:86 without submergence but

increases to about 0.99 with submergence at k ¼ 10: There is also slightly more reflection as k! 0 when submergence is

included—the limiting value is predicted by Lamb (1932) to be ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1=H0

p
Þ=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1=H0

p
Þ. However, including

submergence produces less scattering for k in the interval ð:42; 2:28Þ (for periods between 4.6 and 13 s) than is predicted

without submergence.

Moving to Figs. 2(b) and 3(b), it can be seen that submergence now produces slightly more reflection when the central

ice strip is frozen than when submergence is neglected. Similarly, when the floe’s edges are free the two peaks in

reflection at k � 1:6 and k � 2:6 are about 0.05 and 0.10 greater when submergence is included than when it isn’t. For

the floe in open water, apart from the relative sizes of jRj which are basically the same as in Figs. 2(a) and 3(a), the main

difference between the two cases is the zero in reflection that appears in Fig. 2(b) but which becomes a minimum in

Fig. 3(b). Williams and Squire (2008a) showed that when heave is included as well as submergence the zero reappears.

The most noticeable aspect of Figs. 2(c) and 3(c) are the large number of maxima and minima in the open lead

graphs. These are due to resonances between the lead edges and the wavelength for open water. The wavelength for ice

is much longer which is why fewer resonances are seen when the lead is filled with ice. No resonances are expected for

when the two outer regions are different.

Again, comparing Fig. 2(c) to Fig. 3(c) submergence seems to have more effect when open water is present. The

scattering by the ice-filled lead is essentially the same whether or not submergence is considered, while in the other two

cases submergence produces noticeably more reflection at low and high k, but less reflection for an intermediate range.

Figs. 4 and 5 both show the dependence of the scattering by different edges on the angle of incidence. The periods

used in both are 11.8 s (solid lines, k ¼ 0:5), 7.67 s (dashed lines, k ¼ 1), and 4.97 s (dotted lines, k ¼ 2). As in Fig. 3(b),

results in Figs. 4(b) and 5(b) are both checked against Green’s function method of Williams and Squire (2008a), with

very good agreement being found (as can be seen from the dots plotted on the figures).

The most obvious feature of Figs. 4(a) and 5(a) is the existence of a critical angle beyond which there is complete

reflection. These follow from the relation ay ¼ g0 sin y0 ¼ g1 sin y1; if g1oayog0 then no propagating waves are able to

travel into the right hand region. In addition, they are higher when the left hand region is covered with ice than when it

is just open water. This is because the two wavenumbers are closer when both regions have an ice cover—increasing h0
up to h1 makes g0 drop to g1 (wavelength increases with ice thickness).
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Fig. 4. The dependence of the scattering by edges between open water regions and regions of 1-m-thick ice on the angle of incidence.

The geometries in (a), (b) and (c) are the same as for the solid lines in Figs. 3(a), (b) and (c), respectively. The different lines correspond

to k ¼ 0:5 (solid, wave period is 11.8 s), k ¼ 1 (dashed, wave period is 7.67 s) and k ¼ 2 (dotted, wave period is 4.97 s), and the waves

arrive from the left hand region. minfHj j j ¼ 0; 1; 2g ¼ 20m and submergence effects are included. Checks: The dots plotted in (b)

compare the results using the method of Williams and Squire (2008a), who used Green’s theorem.
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Fig. 5. The dependence of the scattering by free edges between regions of 0.5-m-thick and 1-m-thick ice on the angle of incidence. The

geometries in (a), (b) and (c) are the same as for the dashed lines in Figs. 3(a), (b) and (c), respectively. The different lines correspond to

k ¼ 0:5 (solid), k ¼ 1 (dashed) and k ¼ 2 (dotted) and the waves arrive from the left hand region. minfHj j j ¼ 0; 1; 2g ¼ 20m and

submergence effects are included. Checks: The dots plotted in (b) compare the results using the method of Williams and Squire (2008a),

who used Green’s theorem.
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For smaller angles of incidence, the behaviour is very simple—as it increases it from normal incidence, jRj drops

slightly to a minimum or a zero before climbing to 1 at the critical angle. And as expected, smaller periods produce

more reflection—which is also true in general for Figs. 4(b, c) and 5(b, c).

The addition of an extra edge in Figs. 4(b) and 5(b) adds somewhat more fine structure to the lower period curves,

particularly when a floe is floating in open water (Fig. 4b) or when it is embedded in thinner ice (Fig. 5b). In both k ¼ 2

curves, a pair of zeros can be seen and when hþ 0 ¼ 0:5m an inflexion point is apparent. In general, though the

behaviour is fairly simple—jRj increases to 1 as the angle of incidence is increased up to 90	. We might have expected

there to have also been a critical angle apparent in this case—the fact there isn’t is due to the extra interactions waves

between the two edges due to evanescent waves. That these are able to have an effect is due to the relatively short floe

width (15m); at the smallest period, when l would be the largest compared to the wavelength in the floe we see very large

but not quite total reflection when h0 ¼ 0. If l were increased enough for the evanescent waves to die down before they

reach the edge, we would expect to see the critical angle behaviour re-appearing.

In Figs. 4(c) and 5(c), it is the higher period curves that have the more structure. Both pairs of k ¼ 0:5 and 1 curves

drop to single zeros before climbing to 1 in the grazing-incidence limit. The k ¼ 2 curve in Fig. 4(c) simply climbs

monotonically to 1, although its counterpart in Fig. 5(c) contains a slight inflexion.

The final figure in this section, Fig. 6, reproduces the results for the leads in Figs. 2(c) and 3(c), but this time

compares the exact results with the WSA (Evans, 1990; Martin, 2006). The solid curves, which represent exactly the

scattering by open leads without (a) and with (b) submergence included, are compared to WSA results which are plotted

as dots. Other authors [e.g. Vaughan et al. (2007)] have already established this result when submergence is not

considered, but we wished to demonstrate that the WSA result for an open lead is also very accurate when it is

considered. This result is very important for calculating the scattering by multiple leads as using the WSA greatly

accelerates such computations.

6.2. Edge waves

Fig. 7 shows an example of what the displacement profile of an edge wave along a crack of period 7.67 s (chosen to

make k ¼ 1) in a 1-m-thick ice sheet looks like. The wave profile is sinusoidal in the direction parallel to the crack, but it

has a very slow exponential decay as you travel away from the crack. by=g0 ¼ 1:0002, making its wavelength 118.79m,

only 0.02% smaller than the usual wavelength for a wave of this period under a 1-m-thick ice sheet (118.82m).
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Fig. 6. Verification of the accuracy of the wide-spacing approximation for leads. In all situations the waves are normally incident,

h0 ¼ h2 ¼ 1m, H0 ¼ 20m, and l ¼ 15m, and the results in (a) do not include the effects of submergence while the results in (b) do.

Solid lines show the (exact) scattering when h1 ¼ 0, while the dots show the wide-spacing results for comparison. Dashed lines show the

(exact) scattering when h1 ¼ 0:5m and the free edge conditions are applied at both edges, while the dotted lines show the wide-spacing

results for comparison.

Fig. 7. Displacement profile as an edge wave travels along a crack when h0 ¼ h1 ¼ 1m, period ¼ 7.67 s (k ¼ 1) and H1 ¼ 20m.

by=g0 ¼ 1:0002, making its wavelength 118.79m (compared to 118.82m, which is the usual wavelength for a wave of this period in

water of this depth under a 1-m-thick ice sheet). Note the gradual decay of the wave with distance from the crack.
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Fig. 8 shows that the wavelength of any edgewave along a crack is extremely close to the usual ice wavelength for all

periods, although it is slightly more different for small periods. The figure plots by=g0 � 1, the difference between the

two wavenumbers as a fraction of g0 itself, against k when h0 ¼ h1 ¼ 1m, and it appears that the difference is usually no

more than 0.06%.

We now investigate what happens to the edge waves when we change the thickness of the left hand ice-sheet slightly,

so that the sheets on either side of the crack are no longer identical. Fig. 9 shows that when k ¼ 1 and h1 ¼ 1m, either

increasing or decreasing h0 from h1 causes by to decrease towards gM ¼ maxfg0; g1g. When the two thicknesses differ by

about 2mm, by becomes equal to gM . In this situation the wave no longer decays exponentially on both sides, but

persists to jxj ! 1 in the direction where the ice is thinnest. Defining some parameters d� such that the two times that

by ¼ gM occur when h0=h1 ¼ 1þ d�, we can now say that unless d�ph0=h1 � 1pdþ, no edge waves can exist.

Fig. 10 plots d� for a range of k when h0 ¼ 1m. It shows that for these k if h0 is less than about 5mm different from

this h1, then no edge waves can exist. In addition, as the wavelengths increase, the interval in which edge waves can exist
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Fig. 8. Dependence of the edge-wave wavenumber by on k when h0 ¼ h1 ¼ 1m and H1 ¼ 20m.

Fig. 9. Dependence of the edge-wave wavenumber by on h0 when h1 ¼ 1m, period ¼ 7:67 s (k ¼ 1) and H1 ¼ 20m.

T.D. Williams, R. Porter / Journal of Fluids and Structures 25 (2009) 777–793 791
shrinks to zero, and the largest intervals occur for smaller wavelengths. Such small tolerances suggest that edge waves

are unlikely to ever exist along a real crack between two semi-infinite ice sheets, as the ice on either side would

essentially have to be exactly the same.
7. Conclusions

In this paper, we have formulated the solution to a canonical problem of the scattering of an incident flexural-gravity

wave by an interface between two ice sheets of differing properties in terms of a scattering matrix formulation which

allows the retention of both propagating and evanescent modes when dealing with multiple edges. The formulation used

is exact under linearised theory. A particular novel feature of the present paper is that we have allowed variable

submergence of the ice sheets in accordance with Archimedes’ principle, in contrast the majority of other related work

in this research area. Full generality has been assumed in the choice of ice sheet properties so that, for instance, the ice

thickness may be reduced to zero yielding an open water free surface. In addition, we have also generalised the

connections between two ice sheets to be either frozen or free edges.
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Fig. 10. Range of values for h0 for which edge waves may exist when h1 ¼ 1m and H1 ¼ 20m. d� is the lower curve, while dþ is the

upper curve.
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We have solved the canonical scattering problem involving a single interface by formulating integral equations for

unknown functions related to the horizontal velocity below the interface and solving by a numerically efficient and

accurate Galerkin-based scheme. This approach also has the advantage of being able to take corner singularities into

account, which also enhances the convergence of our results.

Our formulation has been presented in an extremely general way, to explain how the scattering by multiple edges, and

thus by multiple irregularities such as leads and pressure ridges, can be computed.

We have also been able to extend the results of Evans and Porter (2003) and demonstrate the existence of edge waves

propagating between two ice sheets of different thicknesses. However, these edge waves do not persist if the thickness of

one of the sheets is changed more than slightly.
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